
Shift Left Performance
Automated Code inspection for Performance

©Appentra Solutions S.L.
April 2022

Codee Training Series
April 26-27, 2022

Shift Left Performance 2

Walkthrough Exercise:
Calculating ℼ on the GPU with
OpenMP/OpenACC

Goals
● Produce OpenACC version for GPU
● Produce OpenMP version for GPU
● Build & run an OpenMP code on the GPU (for problem size N=900000000)
● Build & run an OpenACC code on the GPU (for problem size N=900000000)

Shift Left Performance 3

The GPU programming challenges: Example code PI

Challenges of GPU acceleration
addressed in introductory course

Other GPU programming challenges to be addressed in
next advanced course

Find
opportunities
for offloading

Optimize
memory layout

for data
transfers

Identify
defects in

data transfers

Exploit massive
parallelism

through loop
nest collapsing

Minimize data
transfers

across
consecutive
loop nests

Minimize data
transfers
through

convergence
loops

Identify
auxiliary

functions to be
offloaded

Example
codes used
in this
introductor
y course

PI x - - - - - -

MATMUL x x x x x - -

LULESHmk x x x x x x x

HEAT x - - - x x -

Your code! Probably all of these challenges apply, and even more!

Shift Left Performance 4

The source code of PI

int main(int argc, char *argv[]) {
 if (argc != 2) {
 printf("Usage: %s <steps>\n", argv[0]);
 printf(" <steps> controls the precision of the approximation.\n");
 return 0;
 }

 // Reads the test parameters from the command line
 unsigned long N = atol(argv[1]);
 printf("- Input parameters\n");
 printf("steps\t= %lu\n", N);

 printf("- Executing test...\n");
 double time_start = getClock();
 // ==

 double out_result;

 double sum = 0.0;
 for (int i = 0; i < N; i++) {
 double x = (i + 0.5) / N;
 sum += sqrt(1 - x * x);
 }

 out_result = 4.0 / N * sum;

 // ==
 double time_finish = getClock();

 // Prints an execution report
 printf("time (s)= %.6f\n", time_finish - time_start);
 printf("result\t= %.8f\n", out_result);
 const double realPiValue = 3.141592653589793238;
 printf("error\t= %.1e\n", fabs(out_result - realPiValue));

 return 0;
}

Shift Left Performance
5

Inspecting the code and optimizing its performance with
Codee

pwdirectives

src

hotspots

performance
report

Directives code
(OpenMP, OpenACC, GCC, Clang)

Profiling tool
(e.g. GNU gprof)

pwreport

pwreport
pwloops#2

#1

Repeat until the target
performance is achieved
(% runtime reduction,
speedup)

Get the performance optimization report for
the whole code base

#1

Create performance-optimized code for the
hotspot automatically

#2

Shift Left Performance

1: Produce the entry-level report for default #actions
(pwreport --evaluation)

6

$ pwreport --evaluation pi.c
Target Lines of code Analyzed lines Analysis time # actions Effort Cost Profiling
------ ------------- -------------- ------------- --------- ------ ------ ---------
pi.c 43 4 33 ms 2 16 h 523€ n/a

ACTIONS PER OPTIMIZATION TYPE
Target Serial scalar Serial control Serial memory Vectorization Multithreading Offloading
------ ------------- -------------- ------------- ------------- -------------- ----------
pi.c 0 0 0 2 n/a n/a

Target : analyzed directory or source code file
Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Analyzed lines : relevant lines of code successfully analyzed
Analysis time : time required to analyze the target
actions : total actionable items (opportunities, recommendations, defects and remarks) detected
Effort : estimated number of hours it would take to carry out all actions (serial scalar, serial control, serial memory, vectorization,
multithreading and offloading with 1, 2, 4, 8, 12 and 16 hours respectively)
Cost : estimated cost in euros to carry out all the actions, paying the average salary of 56,286€/year for a professional C/C++ developer
working 1720 hours per year
Profiling : estimation of overall execution time required by this target

SUGGESTIONS
 You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
 pwreport --evaluation some/other/dir pi.c

 Use --actions to find out details about the detected actions:
 pwreport --actions pi.c

 Multithreading and offloading actions are filtered by default. Use --include-tags to enable them:
 pwreport --include-tags all pi.c

 You can focus on a specific optimization type by filtering by its tag (serial-scalar, serial-control, serial-memory, vectorization,
multithreading, offloading), eg.:
 pwreport --actions --include-tags serial-scalar pi.c

1 file successfully analyzed and 0 failures in 33 ms

By default multithreading and offloading are
disabled in Codee.

Rationale: Codee forces the user to explicitly
enable multithreading and offloading capabilities
to avoid common errors resulting from a
misconfigured software environment (eg. lack of
an OpenMP compiler with offload)

Shift Left Performance

2: Produce the entry-level report for ALL #actions
(pwreport --evaluation --include-tags all)

7

$ pwreport --evaluation --include-tags all pi.c
Target Lines of code Analyzed lines Analysis time # actions Effort Cost Profiling
------ ------------- -------------- ------------- --------- ------ ------- ---------
pi.c 43 4 34 ms 4 44 h 1439€ n/a

ACTIONS PER OPTIMIZATION TYPE
Target Serial scalar Serial control Serial memory Vectorization Multithreading Offloading
------ ------------- -------------- ------------- ------------- -------------- ----------
pi.c 0 0 0 2 1 1

Target : analyzed directory or source code file
Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Analyzed lines : relevant lines of code successfully analyzed
Analysis time : time required to analyze the target
actions : total actionable items (opportunities, recommendations, defects and remarks) detected
Effort : estimated number of hours it would take to carry out all actions (serial scalar, serial control, serial memory, vectorization,
multithreading and offloading with 1, 2, 4, 8, 12 and 16 hours respectively)
Cost : estimated cost in euros to carry out all the actions, paying the average salary of 56,286€/year for a professional C/C++ developer
working 1720 hours per year
Profiling : estimation of overall execution time required by this target

SUGGESTIONS
 You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
 pwreport --evaluation some/other/dir --include-tags all pi.c

 Use --actions to find out details about the detected actions:
 pwreport --actions --include-tags all pi.c

 You can focus on a specific optimization type by filtering by its tag (serial-scalar, serial-control, serial-memory, vectorization,
multithreading, offloading), eg.:
 pwreport --actions --include-tags serial-scalar pi.c

1 file successfully analyzed and 0 failures in 34 ms

By enabling ALL actions in
the report now identifies 1

offload opportunity

Shift Left Performance

3: Produce the report of ALL #actions per type of loops
(pwreport --evaluation --include-tags all --level 2)

8

$ pwreport --evaluation --level 2 --include-tags all pi.c
Target Lines of code Analyzed lines Analysis time # actions Effort Cost Profiling
------ ------------- -------------- ------------- --------- ------ ------- ---------
pi.c 43 4 33 ms 4 44 h 1439€ n/a

ACTIONS PER OPTIMIZATION TYPE
Target Serial scalar Serial control Serial memory Vectorization Multithreading Offloading
------ ------------- -------------- ------------- ------------- -------------- ----------
pi.c 0 0 0 2 1 1

ACTIONS PER LOOP TYPE PER OPTIMIZATION TYPE
Loop Type No. Loops Serial scalar Serial control Serial memory Vectorization Multithreading Offloading
--------- --------- ------------- -------------- ------------- ------------- -------------- ----------
Low 1 0 0 0 2 1 1
Medium 0 0 0 0 0 0 0
High 0 0 0 0 0 0 0

Target : analyzed directory or source code file
Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Analyzed lines : relevant lines of code successfully analyzed
Analysis time : time required to analyze the target
actions : total actionable items (opportunities, recommendations, defects and remarks) detected
Effort : estimated number of hours it would take to carry out all actions (serial scalar, serial control, serial memory, vectorization,
multithreading and offloading with 1, 2, 4, 8, 12 and 16 hours respectively)
Cost : estimated cost in euros to carry out all the actions, paying the average salary of 56,286€/year for a professional C/C++ developer
working 1720 hours per year
Profiling : estimation of overall execution time required by this target

SUGGESTIONS
 You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
 pwreport --evaluation some/other/dir --include-tags all pi.c

 Use --actions to find out details about the detected actions:
 pwreport --actions --include-tags all pi.c

 You can focus on a specific optimization type by filtering by its tag (serial-scalar, serial-control, serial-memory, vectorization,
multithreading, offloading), eg.:
 pwreport --actions --include-tags serial-scalar pi.c

1 file successfully analyzed and 0 failures in 33 ms

By increasing the details of the
report, the tool reports that ALL
the actions are identified in the
scope of loops that have LOW
difficulty from the performance
optimization viewpoint

Shift Left Performance

4: Produce the Codee Actions Report for the target function
(pwreport --actions)

9

$ pwreport --actions --include-tags all pi.c:main
ACTIONS REPORT

 FUNCTION BEGIN at pi.c:main:12:1
 12: int main(int argc, char *argv[]) {

 LOOP BEGIN at pi.c:main:31:5
 31: for (int i = 0; i < N; i++) {

 [RMK011] pi.c:31:5 the vectorization cost model states the loop might benefit from explicit vectorization

 [OPP001] pi.c:31:5 is a multi-threading opportunity
 [OPP002] pi.c:31:5 is a SIMD opportunity
 [OPP003] pi.c:31:5 is an offload opportunity
 LOOP END
 FUNCTION END

CODE COVERAGE
 Analyzable files: 1 / 1 (100.00 %)
 Analyzable functions: 1 / 1 (100.00 %)
 Analyzable loops: 1 / 1 (100.00 %)
 Parallelized SLOCs: 0 / 25 (0.00 %)

METRICS SUMMARY
 Total recommendations: 0
 Total opportunities: 3
 Total defects: 0
 Total remarks: 1

SUGGESTIONS

 Use --level 0|1|2 to get more details, e.g:
 pwreport --level 2 --actions --include-tags all pi.c:main

 3 opportunities for parallelization were found in your code, get more information with pwloops:
 pwloops pi.c:main

 More details on the defects, recommendations and more in the Knowledge Base:

 https://www.appentra.com/knowledge/
1 file successfully analyzed and 0 failures in 34 ms

Each action is reported in the scope of the
corresponding loop:
- vectorization (loop:31 OPP002 related to RMK011)
- multithreading (loop:31 OPP001)
- offloading (loop:31 OPP003)

Shift Left Performance

5: Produce the detailed actions for the target function
(pwreport --actions --level 2)

10

$ pwreport --actions --level 2 --include-tags all pi.c:main
ACTIONS REPORT

 FUNCTION BEGIN at pi.c:main:12:1
 8: int main(int argc, char *argv[]) {

 LOOP BEGIN at pi.c:main:31:5
 31: for (int i = 0; i < N; i++) {
 32: double x = (i + 0.5) / N;
 33: sum += sqrt(1 - x * x);
 34: }

 [OPP003] pi.c:31:5 is an offload opportunity
 Compute patterns:
 - 'scalar' over the variable 'sum'

 SUGGESTION: use pwloops to get more details or pwdirectives to generate directives:
 pwloops pi.c:main:31:5
 pwdirectives --omp offload pi.c:main:31:5 --in-place
 pwdirectives --acc pi.c:main:31:5 --in-place

 More information on: https://www.appentra.com/knowledge/opportunities

 LOOP END
 FUNCTION END
. . .

By enabling the detailed report for
OPP003 (offload opportunity) you obtain
suggestions to invoke pwdirectives for
automatic annotation of the source code
with OpenMP and OpenACC offload
directives
(note: source code edited "in-place" by
default")

Shift Left Performance

6a: Annotate the code for GPU + OpenMP
(pwdirectives --omp offload)

11

$ pwdirectives --omp offload pi.c:main:31:5 -o pi_ompOff.c
Results for file 'pi.c':
 Successfully parallelized loop at 'pi.c:main:31:5' [using offloading]:
 [INFO] pi.c:31:5 Parallel scalar reduction pattern identified for variable 'sum' with associative, commutative operator '+'
 [INFO] pi.c:31:5 Available parallelization strategies for variable 'sum'
 [INFO] pi.c:31:5 #1 OpenMP scalar reduction (* implemented)
 [INFO] pi.c:31:5 #2 OpenMP atomic access
 [INFO] pi.c:31:5 #3 OpenMP explicit privatization
 [INFO] pi.c:31:5 Loop parallelized with teams using OpenMP directive 'target teams distribute parallel for'
Successfully created pi_ompOff.c

Minimum software stack requirements: OpenMP version 4.0 with offloading capabilities

$ cat pi_ompOff.c
…
 // ==

 double out_result;

 double sum = 0.0;
 #pragma omp target teams distribute parallel for shared(N) map(to: N) reduction(+: sum) map(tofrom: sum) schedule(static)
 for (int i = 0; i < N; i++) {
 double x = (i + 0.5) / N;
 sum += sqrt(1 - x * x);
 }

 out_result = 4.0 / N * sum;

 // ==

…

Just copy & paste the
suggested invocation of
pwdirectives, which will
rewrite the code for you
adding OpenMP directives

 (note: source code edited
"in-place" by default" and
in this example we are
using “-o” to write a
separate source code file)

By default the OpenMP generated code:
- offloads the computation with "target teams"
- manages data transfers with “map”
- splits workload with “schedule(static)”

Shift Left Performance

6b: Annotate the code for GPU + OpenACC
(pwdirectives --acc)

12

$ pwdirectives --acc pi.c:main:31:5 -o pi_acc.c
Results for file 'pi.c':
 Successfully parallelized loop at 'pi.c:main:31:5' [using offloading without teams]:
 [INFO] pi.c:31:5 Parallel scalar reduction pattern identified for variable 'sum' with associative, commutative operator '+'
 [INFO] pi.c:31:5 Available parallelization strategies for variable 'sum'
 [INFO] pi.c:31:5 #1 OpenACC scalar reduction (* implemented)
 [INFO] pi.c:31:5 #2 OpenACC atomic access
 [INFO] pi.c:31:5 Parallel region defined by OpenACC directive 'parallel'
 [INFO] pi.c:31:5 Loop parallelized with OpenACC directive 'loop'
 [INFO] pi.c:31:5 Data region for host-device data transfers defined by OpenACC directive 'data'
Successfully created pi_acc.c

Minimum software stack requirements: OpenACC version 2.0 with offloading capabilities

$ cat pi_acc.c
...
 // ==

 double out_result;

 double sum = 0.0;
 #pragma acc data copyin(N) copy(sum)
 {
 #pragma acc parallel
 {
 #pragma acc loop reduction(+: sum)
 for (int i = 0; i < N; i++) {
 double x = (i + 0.5) / N;
 sum += sqrt(1 - x * x);
 }
 } // end parallel
 } // end data

 out_result = 4.0 / N * sum;

 // ==
...

In a similar manner, for OpenACC just copy
& paste the suggested invocation of
pwdirectives, which will rewrite the code
for you adding OpenACC directives
(note: source code edited "in-place" by
default" and in this example we are using
“-o” to write a separate source code file)

By default the OpenACC generated code:
- offloads the computation with "parallel"
- manages data transfers with “data copy”

(note: OpenACC provides a more elegant
solution to manage data transfers for
double** data types)

Shift Left Performance

7: Benchmarking on Perlmutter @NERSC
(using Nvidia toolchain)

13

$ nvc pi.c -lm -fast -o pi
$./pi 900000000
- Input parameters
steps = 900000000
- Executing test...
time (s)= 0.873033
result = 3.14159265
error = 8.0e-15

$ nvc -mp=gpu -fast -gpu=cc80 -lm pi_ompOff.c -o pi_ompOff
$./pi_ompOff 900000000
- Input parameters
steps = 900000000
- Executing test...
time (s)= 0.172202
result = 3.14159265
error = 8.9e-14

$ nvc -acc -fast -gpu=cc80 -lm pi_acc.c -o pi_acc
$./pi_acc 900000000
- Input parameters
steps = 900000000
- Executing test...
time (s)= 0.119455
result = 3.14159265
error = 1.3e-14

PI code runs correctly on the GPU
@perlmutter and 5.1x faster using
OpenMP offload

PI code runs correctly on the GPU
@perlmutter and 7.3x faster using
OpenACC offload

By default, the recommendation for
Perlmutter @NERSC is to use the Nvidia
Programming Environment

#!/bin/bash
#SBATCH -A ntrain2_g
#SBATCH --reservation=codee_day1
#SBATCH -C gpu
#SBATCH -q regular
#SBATCH -t 0:10:00
#SBATCH -N 1
#SBATCH --ntasks-per-node=1
#SBATCH -c 128
#SBATCH --gpus-per-task=1

export SLURM_CPU_BIND="cores"
srun PI.sh

Launch script “launch.sh”

#!/bin/bash

rm pi pi_ompOff pi_acc

nvc pi.c -lm -fast -o pi
./pi 900000000

nvc -mp=gpu -fast -gpu=cc80 -lm pi_ompOff.c -o pi_ompOff
./pi_ompOff 900000000

nvc -acc -fast -gpu=cc80 -lm pi_acc.c -o pi_acc
./pi_acc 900000000

PI execution script “PI.sh”

Shift Left Performance
14

Final remarks about using Codee at NERSC

● First, remember to load the Codee module
$ module load codee

● The flag --help lists all the options available in the Codee command-line tools
$ pwreport --help
$ pwloops --help
$ pwdirectives --help

● You can run Codee command-line tools on the login nodes (no need to run them
on the compute nodes)

● Build and run the example codes on the compute nodes using the batch scripts
○ Scripts tuned to use the appropriate reservations: codee_day1, codee_day2

● Remember to check the open catalog of rules for performance optimization:

https://www.codee.com/knowledge/

https://www.codee.com/knowledge/

codee_com

company/codee-com/

www.codee.com

info@codee.com

Subscribe: codee.com/newsletter/

USA - Spain

https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

